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A table giving the statistics of the visible symmetry point groups for all non-

isomorphic 4- to 8-hedra and simple 9- to 11-hedra is presented. Some

disagreements between the previous data are eliminated. The main tendency for

n-hedra to be asymmetric with increasing n is brie¯y discussed.

1. Introduction

A series of crystallographic and mineralogical tasks face the combi-

natorial problem of polyhedra enumeration. Nowadays, the exact

numbers of 4- to 12-hedra and simple (only three edges meet at each

vertex) 13-hedra are declared (Engel, 1994). Among quite a number

of works on the topic (see Duijvestijn & Federico, 1981, for a

bibliography), we distinguish those by Fedorov (1893), Bruckner

(1900), Bouwkamp (1946, 1947), Britton & Dunitz (1973) and

Federico (1975). As a whole, they contain drawings of all 4- to

8-hedra, 4- to 8-acra (i.e. polyhedra with 4 to 8 vertices) and simple

9- and 10-hedra. So, any features of these polyhedra may be easily

found.

2. Characterization of polyhedra

Fedorov (1893) and Britton & Dunitz (1973) characterize polyhedra

by their visible symmetry (i.e. maximal possible symmetry of the

polyhedra with the same combinatorial type;

the term was introduced by Fedorov) while

others prefer the automorphism group

orders. The automorphism group plays

an essential role in the combinatorial

morphology of polyhedra. It can be calcu-

lated directly from the edge graph of each

polyhedron. The polyhedra of the same

combinatorial type and different symmetry

may exist if the automorphism group of their

edge graph has nontrivial subgroups. The

determination of the symmetry point group

of a polyhedron requires its de®nite metrical

implementation. Three fundamental the-

orems form the background of the related

theory: two theorems by Steinitz ± a graph is

3-polyhedral if and only if it is 3-connected

and planar (Steinitz, 1922), and every 2-

sphere can be realized as a convex 3-poly-

hedron (Steinitz & Rademacher, 1934); and

the theorem by Barnett & Grunbaum (1970)

± the shape of any facet of a 3-polyhedron

can be preassigned.

In this paper, we deal with the visible

symmetries of the polyhedra that directly

relate to the automorphism groups of their

edge graphs. An automorphism group order

n uniquely corresponds to the symmetry

point group when n = 1 (asymmetric polyhedra) or n > 2 is a prime

number. The latter corresponds to the polyhedra of the axial n (Ln)

symmetry. In other cases, the visible symmetry point group char-

acterizes a polyhedron more precisely. According to various authors,

there are some disagreements between the data on the symmetry and

automorphism group orders of polyhedra. That is why we decided (i)

to independently generate drawings of 4- to 8-hedra and simple 9- to

11-hedra and de®ne their visible symmetry, (ii) to revise the available

data.

To generate polyhedra, the Fedorov (1893) recurrence algorithm

explained also by Engel (1994) was used. All the 4- to 8-hedra and

simple 9- to 11-hedra are published in Voytekhovsky (1999, 2000).

Each polyhedron is drawn in an axonometric projection and

described by the facet symbol meaning the numbers of trilinear,

quadrilateral, pentagonal etc. facets and by its visible symmetry point

group. The following errors were found in the previous data (Fig. 1).

Fedorov (1893) has given two isomorphic polyhedra IV0 0 011 and

Figure 1
Some errors in determination of the visible symmetry in different projections of the polyhedra. See text for
further explanations.



IV0 0 012 as different ones. He has also duplicated the enantiomorphic

pair VI 46, 47 as VI 55, 56. It was Engel (1994) who paid attention to

these mistakes for the ®rst time. It may be de®ned more exactly that

Fedorov has erroneously given m symmetry (in recent notation)

instead of 3m symmetry for the polyhedron IV0 0 012 as can be seen in

an appropriate projection. The numbers make comparison easier.

The asymmetric polyhedron VI 46 is equal to 56 while VI 47 is equal

to 55. One more error by Fedorov is that the polyhedron VI 44 is not

of m but of 3m symmetry.

Britton & Dunitz (1973) have erroneously given m symmetry for

the polyhedron N 11. From the axonometric projection, it is clear that

it is of mm symmetry. The letters make comparison easier. (The

authors use the numbers to show how many edges meet at each

vertex.) There is one more error in this paper. The polyhedron N 64

has m (Cs) symmetry.

The ®nal results are in Fig. 2. When reduced to the automorphism

group orders, these show one more error in Duijvestijn & Federico

(1981). The authors give 98 symmetric 10-hedra with 8 of order 6. To

get this statistic, drawings in Bruckner (1900) were checked. We

found 96 symmetric 10-hedra with 6 of order 6 (3m symmetry). Their

numbers in Bruckner (1900) are 15, 34c, 34d, 75b, 75e, 84. Now, the

question on the symmetry of all the 4- to 8-hedra and simple 9- to

11-hedra appears to be exhausted.

The most impressive result is that n-hedra tend to be asymmetric as

n increases. In this sense, the variety of 3-polyhedra is mostly asym-

metric. As was found by Shafranovsky (1987), Dolivo-Dobrovolsky

(1987) and Yushkin (1993), mineral species belonging to the 2=m and

mmm symmetries prevail in the earth's crust. So, the recent statistics

of crystal symmetry are of a different pro®le. But Khomyakov (1999)

predicts a great amount of micro- and nanometric mainly triclinic new

mineral species in the future. And the question remains whether the

real crystalline polyhedra follow the same tendency as the abstract

polyhedra do or not?

To conclude, we would like to look at available data on the

12-hedra. The number of 11-hedra with 12 vertices (64439) does not

equal the number of 12-hedra with 11 vertices (64445) as published in

Engel (1994). The ®rst number corresponds to that given in

Duijvestijn & Federico (1981) and appears to be correct. So, the

number of 12-hedra with 11 vertices and, hence, the total number of

12-hedra must be checked. As for simple 12-hedra (7595), to calculate

their visible symmetries a computer program was developed and

successfully tested for available simple 4- to 11-hedra. Afterwards,

the following statistics for simple 12-hedra were found: 1 ± 6756, �1 ± 4,

m ± 597, 2 ± 146, 3 ± 1, 2=m ± 10, mm2 ± 53, 222 ± 3, �4 ± 2, 3m ± 5, 32 ± 1,
�6 ± 1, mmm ± 4, �42m ± 6, L5 5P ± 1, �3m ± 2, �6m2 ± 1, L10 10L2 11P C

(prism) ± 1, 15L2 10L3 6L5 15P C (dodecahedron) ± 1. When modi®ed

to the automorphism group orders, it corresponds to the data by

Duijvestijn & Federico (1981). Nevertheless, this preliminary result

should be independently checked.

I acknowledge great bene®t from the comments made by two

referees. I also thank my student Dmitry G. Stepenshchikov for his

assistance in computer searching for simple 12-hedra.
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Figure 2
The numbers of 4- to 8-hedra and simple 9- to 11-hedra with different visible symmetry point groups. Note: to emphasize non-crystallographic symmetries here and in the
text, they are given by the formulae including the axes Ln and inversion axes Lin of the nth order, planes P and inversion centre C.


